majorization procedure - definitie. Wat is majorization procedure
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is majorization procedure - definitie

GEOMETRIC PLACEMENT BASED ON IDEAL DISTANCES
Stress Majorization

Credé's prophylaxis         
MEDICAL PROCEDURE PERFORMED ON NEWBORNS
Crede procedure; Credé procedure
Credé procedure is the practice of washing a newborn's eyes with a 2% silver nitrate solution to protect against neonatal conjunctivitis caused by Neisseria gonorrhoeae.
Radiotelephony procedure         
METHODS TO MAKE VOICE COMMUNICATIONS UNDERSTOOD OVER A POTENTIALLY DEGRADED CHANNEL
Radio language; Communications discipline; Voice procedure; Radiotelephony voice procedure
Radiotelephony procedure (also on-air protocol and voice procedure) includes various techniques used to clarify, simplify and standardize spoken communications over two-way radios, in use by the armed forces, in civil aviation, police and fire dispatching systems, citizens' band radio (CB), and amateur radio.
Stress majorization         
Stress majorization is an optimization strategy used in multidimensional scaling (MDS) where, for a set of n m-dimensional data items, a configuration X of n points in r (\ll m)-dimensional space is sought that minimizes the so-called stress function \sigma(X). Usually r is 2 or 3, i.

Wikipedia

Stress majorization

Stress majorization is an optimization strategy used in multidimensional scaling (MDS) where, for a set of n {\displaystyle n} m {\displaystyle m} -dimensional data items, a configuration X {\displaystyle X} of n {\displaystyle n} points in r {\displaystyle r} ( m ) {\displaystyle (\ll m)} -dimensional space is sought that minimizes the so-called stress function σ ( X ) {\displaystyle \sigma (X)} . Usually r {\displaystyle r} is 2 {\displaystyle 2} or 3 {\displaystyle 3} , i.e. the ( n × r ) {\displaystyle (n\times r)} matrix X {\displaystyle X} lists points in 2 {\displaystyle 2-} or 3 {\displaystyle 3-} dimensional Euclidean space so that the result may be visualised (i.e. an MDS plot). The function σ {\displaystyle \sigma } is a cost or loss function that measures the squared differences between ideal ( m {\displaystyle m} -dimensional) distances and actual distances in r-dimensional space. It is defined as:

σ ( X ) = i < j n w i j ( d i j ( X ) δ i j ) 2 {\displaystyle \sigma (X)=\sum _{i<j\leq n}w_{ij}(d_{ij}(X)-\delta _{ij})^{2}}

where w i j 0 {\displaystyle w_{ij}\geq 0} is a weight for the measurement between a pair of points ( i , j ) {\displaystyle (i,j)} , d i j ( X ) {\displaystyle d_{ij}(X)} is the euclidean distance between i {\displaystyle i} and j {\displaystyle j} and δ i j {\displaystyle \delta _{ij}} is the ideal distance between the points (their separation) in the m {\displaystyle m} -dimensional data space. Note that w i j {\displaystyle w_{ij}} can be used to specify a degree of confidence in the similarity between points (e.g. 0 can be specified if there is no information for a particular pair).

A configuration X {\displaystyle X} which minimizes σ ( X ) {\displaystyle \sigma (X)} gives a plot in which points that are close together correspond to points that are also close together in the original m {\displaystyle m} -dimensional data space.

There are many ways that σ ( X ) {\displaystyle \sigma (X)} could be minimized. For example, Kruskal recommended an iterative steepest descent approach. However, a significantly better (in terms of guarantees on, and rate of, convergence) method for minimizing stress was introduced by Jan de Leeuw. De Leeuw's iterative majorization method at each step minimizes a simple convex function which both bounds σ {\displaystyle \sigma } from above and touches the surface of σ {\displaystyle \sigma } at a point Z {\displaystyle Z} , called the supporting point. In convex analysis such a function is called a majorizing function. This iterative majorization process is also referred to as the SMACOF algorithm ("Scaling by MAjorizing a COmplicated Function").